3. van der Schaar M, Zame W. Machine learning for individualised medicine. In: Pearson-Stuttard J, Murphy O, editors. Annual report of the chief medical officer, 2018. Health 2040 – better health within reach. Department of Health and Social Care; 2018.
4. French MA, Roemmich RT, Daley K, Beier M, Penttinen S, Raghavan P, et al. Precision rehabilitation: optimizing function, adding value to health care. Arch Phys Med Rehabil 2022;103:1233-9.
6. Reda R, Piccinini F, Carbonaro A. Towards consistent data representation in the IoT healthcare landscape. Paper presented at: DH '18: Proceedings of the 2018 International Conference on Digital Health; 2018 Apr 23-26; Lyon, France. p. 5-10.
7. Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 2008;77:81-97.
13. Delahanty RJ, Alvarez J, Flynn LM, Sherwin RL, Jones SS. Development and evaluation of a machine learning model for the early identification of patients at risk for sepsis. Ann Emerg Med 2019;73:334-44.
16. Ye C, Li J, Hao S, Liu M, Jin H, Zheng L, et al. Identification of elders at higher risk for fall with statewide electronic health records and a machine learning algorithm. Int J Med Inform 2020;137:104105.
22. Henderson CE, Fahey M, Brazg G, Moore JL, Hornby TG. Predicting discharge walking function with high-intensity stepping training during inpatient rehabilitation in nonambulatory patients poststroke. Arch Phys Med Rehabil 2022;103(7S): S189-96.
23. Scrutinio D, Lanzillo B, Guida P, Mastropasqua F, Monitillo V, Pusineri M, et al. Development and validation of a predictive model for functional outcome after stroke rehabilitation: the Maugeri model. Stroke 2017;48:3308-15.
24. Stinear CM, Smith MC, Byblow WD. Prediction tools for stroke rehabilitation. Stroke 2019;50:3314-22.
27. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318:2199-210.
31. Solana-Lavalle G, Rosas-Romero R. Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson's disease. Comput Methods Programs Biomed 2021;198:105793.
32. Liew SL, Schweighofer N, Cole JH, Zavaliangos-Petropulu A, Lo BP, Han LKM, et al. Association of brain age, lesion volume, and functional outcome in patients with stroke. Neurology 2023;100:e2103-13.
33. Warmerdam E, Hausdorff JM, Atrsaei A, Zhou Y, Mirelman A, Aminian K, et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol 2020;19:462-70.
34. Adans-Dester CP, Lang CE, Reinkensmeyer DJ, Bonato P. Wearable sensors for stroke rehabilitation. In: Reinkensmeyer DJ, Marchal-Crespo L, Dietz V, editors. Neurorehabilitation technology. Springer; 2022. p.467-507.
49. Adib F, Mao H, Kabelac Z, Katabi D, Miller RC. Smart homes that monitor breathing and heart rate. Paper presented at: CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems; 2015 Apr 18-23; Seoul, Korea. p. 837-46.
59. Adde L, Helbostad JL, Jensenius AR, Taraldsen G, Grunewaldt KH, Støen R. Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility study. Dev Med Child Neurol 2010;52:773-8.
61. Alaa AM, van der Schaar M. Demystifying black-box models with symbolic metamodels. Paper presented at: Advances in Neural Information Processing Systems 32 (NeurIPS 2019); 2019 Dec 8-14; Vancouver, Canada. p. 32.
63. Parimbelli E, Buonocore TM, Nicora G, Michalowski W, Wilk S, Bellazzi R. Why did AI get this one wrong? - tree-based explanations of machine learning model predictions. Artif Intell Med 2023;135:102471.
65. Pacini Panebianco G, Bisi MC, Stagni R, Fantozzi S. Analysis of the performance of 17 algorithms from a systematic review: influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture 2018;66:76-82.
66. Atallah L, Lo B, King R, Yang GZ. Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans Biomed Circuits Syst 2011;5:320-9.
68. Luo Z, Hsieh JT, Balachandar N, Yeung S, Pusiol G, Luxenberg J, et al. Computer vision-based descriptive analytics of seniors’ daily activities for long-term health monitoring. Proc Mach Learn Res 2018;85:1-18.
70. Fusca M, Negrini F, Perego P, Magoni L, Molteni F, Andreoni G. Validation of a wearable IMU system for gait analysis: protocol and application to a new system. Appl Sci 2018;8:1167.
73. Lanotte F, Shin SY, O'Brien MK, Jayaraman A. Validity and reliability of a commercial wearable sensor system for measuring spatiotemporal gait parameters in a post-stroke population: the effects of walking speed and asymmetry. Physiol Meas 2023;44:085005.
75. Prates MOR, Avelar PHC, Lamb L. Assessing gender bias in machine translation: a case study with Google Translate. Neural Comput Appl 2020;32:6363-81.
77. Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003;18:1-10.
78. Jasiewicz JM, Allum JH, Middleton JW, Barriskill A, Condie P, Purcell B, et al. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006;24:502-9.
80. Herrero JG, Patricio MA, Molina JM, Cardoso LA. Contextual and human factors in information fusion. IOS Press Ebooks; 2010. p.79-92.
81. Yu L, Zhou R, Chen R, Lai KK. Missing data preprocessing in credit classification: one-hot encoding or imputation? Emerg Markets Financ Trade 2020;58:472-82.
82. Guyon I, Elisseef A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-82.
83. Baxter J. A model of inductive bias learning. J Artif Intell Res 2000;12:149-98.
85. Turgeman L, May JH, Sciulli R. Insights from a machine learning model for predicting the hospital Length of Stay (LOS) at the time of admission. Expert Syst Appl 2017;78:376-85.
86. Lonini L, Shawen N, Ghaffari R, Rogers J, Jayarman A. Automatic detection of spasticity from flexible wearable sensors. Paper presented at: UbiComp '17: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers; 2017 Sep 11-15; Maui, Hawaii. p. 133-6.
88. Bacciu D, Chessa S, Gallicchio C, Micheli A, Pedrelli L, Ferro E, et al. A learning system for automatic Berg Balance Scale score estimation. Eng Appl Artif Intell 2017;66:60-74.
95. Du C, Graham S, Depp C, Nguyen T. Assessing physical rehabilitation exercises using graph convolutional network with self-supervised regularization. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:281-5.
97. Che Z, Cheng Y, Zhai S, Sun Z, Liu Y. Boosting deep learning risk prediction with generative adversarial networks for electronic health records. Paper presented at: 2017 IEEE International Conference on Data Mining (ICDM); 2017 Nov 18-21; New Orleans, USA. p. 787-92.
98. Shen C, Wang Z, Villar SS, Van Der Schaar M. Learning for dose allocation in adaptive clinical trials with safety constraints. Paper presented at: ICML'20: Proceedings of the 37th International Conference on Machine Learning; 2020 Jul 13-18; Virtual Event. p. 8730-40.
99. Arora A, Arora A. The promise of large language models in health care. Lancet 2023;401:641.
104. Sahiner B, Chen W, Samala RK, Petrick N. Data drift in medical machine learning: implications and potential remedies. Br J Radiol 2023;96:20220878.