1. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 1943;5:115-33.
2. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization (1958). In: Lewis HR, editor. Ideas that created the future: classic papers of computer science. The MIT Press; 2021. p.183.
3. Minsky M, Papert S. (1969) Marvin Minsky and Seymour Papert, Perceptrons, Cambridge, MA: MIT Press, Introduction, pp. 1-20, and p. 73 (figure 5.1). In: Anderson JA, Rosenfeld E, editors. Neurocomputing, volume 1: foundations of research. The MIT Press; 1988. p.675.
4. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, PDP Research Group, editors. Parallel distributed processing, volume 1: explorations in the microstructure of cognition: foundations. The MIT Press; 1986. p.676-9.
5. Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, et al. UNETR: transformers for 3D medical image segmentation. Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022 Jan 3-8; Waikoloa (HI), USA. New York City (NY): IEEE; 2022.
6. LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. Proceedings of the 2010 IEEE International Symposium on Circuits and Systems; 2010 May 30-Jun 2; Paris, France. New York City (NY): IEEE; 2010.
7. Hatamizadeh A, Nath V, Tang Y, Yang D, Roth HR, Xu D. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images. Proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021; 2021 Sep 27; Virtual Event. Cham: Springer; 2022.
8. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015; 2015 Oct 5-9; Munich, Germany. Cham: Springer; 2015.
9. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017); 2017 Dec 4-9; Long Beach (CA), USA. Red Hook (NY): Curran Associates, Inc.; 2017.
10. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: hierarchical vision transformer using shifted windows. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021 Oct 10-17; Montreal (QC), Canada. New York City (NY): IEEE; 2022.
13. Lo R, Gitelman D, Levy R, Hulvershorn J, Parrish T. Identification of critical areas for motor function recovery in chronic stroke subjects using voxel-based lesion symptom mapping. Neuroimage 2010;49:9-18.
14. Goldenberg G, Spatt J. Influence of size and site of cerebral lesions on spontaneous recovery of aphasia and on success of language therapy. Brain Lang 1994;47:684-98.
15. Munsch F, Sagnier S, Asselineau J, Bigourdan A, Guttmann CR, Debruxelles S, et al. Stroke location is an independent predictor of cognitive outcome. Stroke 2016;47:66-73.
17. Hernandez Petzsche MR, de la Rosa E, Hanning U, Wiest R, Valenzuela W, Reyes M, et al. ISLES 2022: a multi-center magnetic resonance imaging stroke lesion segmentation dataset. Sci Data 2022;9:762.
19. MONAI [Internet]. MONAI Consortium [cited 2023 Dec 7]. Available from:
https://monai.io
25. Wang P, Chung ACS. Focal dice loss and image dilation for brain tumor segmentation. Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018; 2018 Sep 20; Granada, Spain. Cham: Springer; 2018.
27. Mangla R, Kolar B, Almast J, Ekholm SE. Border zone infarcts: pathophysiologic and imaging characteristics. Radiographics 2011;31:1201-14.
28. Fisher CM. Lacunes: small, deep cerebral infarcts. Neurology 1998;50:841-841-a.
29. Ho Y, Wookey S. The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 2019;8:4806-13.
31. Subudhi A, Sahoo S, Biswal P, Sabut S. Segmentation and classification of ischemic stroke using optimized features in brain MRI. Biomed Eng Appl Basis Commun 2018;30:1850011.
32. Cetinoglu YK, Koska IO, Uluc ME, Gelal MF. Detection and vascular territorial classification of stroke on diffusion-weighted MRI by deep learning. Eur J Radiol 2021;145:110050.
33. Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization. Proceedings of the 4th International MICCAI Brainlesion Workshop, BrainLes 2018; 2018 Sep 16; Granada, Spain. Cham: Springer; 2019.
35. Wang W, Chen C, Ding M, Yu H, Zha S, Li J. TransBTS: multimodal brain tumor segmentation using transformer. Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021; 2021 Sep 27-Oct 1; Strasbourg, France. Cham: Springer; 2021.
37. Wardlaw JM, Mair G, von Kummer R, Williams MC, Li W, Storkey AJ, et al. Accuracy of automated computer-aided diagnosis for stroke imaging: a critical evaluation of current evidence. Stroke 2022;53:2393-403.