Citations
To determine whether providing education about the disease pathophysiology and drug mechanisms and side effects, would be effective for reducing the use of pain medication while appropriately managing neurogenic pain in spinal cord injury (SCI) patients.
In this prospective study, 109 patients with an SCI and neuropathic pain, participated in an educational pain management program. This comprehensive program was specifically created, for patients with an SCI and neuropathic pain. It consisted of 6 sessions, including educational training, over a 6-week period.
Of 109 patients, 79 (72.5%) initially took more than two types of pain medication, and this decreased to 36 (33.0%) after the educational pain management program was completed. The mean pain scale score and the number of pain medications decreased, compared to the baseline values. Compared to the non-response group, the response group had a shorter duration of pain onset (p=0.004), and a higher initial number of different medications (p<0.001) and certain types of medications.
This study results imply that an educational pain management program, can be a valuable complement to the treatment of spinal cord injured patients with neuropathic pain. Early intervention is important, to prevent patients from developing chronic SCI-related pain.
Citations
To evaluate whether the combination of muscle motor evoked potentials (mMEPs) and somatosensory evoked potentials (SEPs) measured during spinal surgery can predict immediate and permanent postoperative motor deficits.
mMEP and SEP was monitored in patients undergoing spinal surgery between November 2012 and July 2014. mMEPs were elicited by a train of transcranial electrical stimulation over the motor cortex and recorded from the upper/lower limbs. SEPs were recorded by stimulating the tibial and median nerves.
Combined mMEP/SEP recording was successfully achieved in 190 operations. In 117 of these, mMEPs and SEPs were stable and 73 showed significant changes. In 20 cases, motor deficits in the first 48 postoperative hours were observed and 6 patients manifested permanent neurological deficits. The two potentials were monitored in a number of spinal surgeries. For surgery on spinal deformities, the sensitivity and specificity of combined mMEP/SEP monitoring were 100% and 92.4%, respectively. In the case of spinal cord tumor surgeries, sensitivity was only 50% but SEP changes were observed preceding permanent motor deficits in some cases.
Intraoperative monitoring is a useful tool in spinal surgery. For spinal deformity surgery, combined mMEP/SEP monitoring showed high sensitivity and specificity; in spinal tumor surgery, only SEP changes predicted permanent motor deficits. Therefore, mMEP, SEP, and joint monitoring may all be appropriate and beneficial for the intraoperative monitoring of spinal surgery.
Citations