To investigate the changes of activation of the abdominal muscles depending on exercise angles and whether the activation of rectus abdominis differs according to the location, during curl up and leg raise exercises, by measuring the thickness ratio of abdominal muscles using ultrasonography.
We examined 30 normal adults without musculoskeletal problems. Muscle thickness was measured in the upper rectus abdominis (URA), lower rectus abdominis (LRA), obliquus externus (EO), obliquus internus (IO), and transversus abdominis (TrA), at pre-determined angles (30°, 60°, 90°) and additionally at the resting angle (0°). Muscle thickness ratio was calculated by dividing the resting (0°) thickness for each angle, and was used as reflection of muscle activity.
The muscle thickness ratio was significantly different depending on the angles in URA and LRA. For curl up-URA p=0 (30°<60°), p=0 (60°>90°), p=0.44 (30°<90°) and LRA p=0.01 (30°<60°), p=0 (60°>90°), p=0.44 (30°>90°), respectively, by one-way ANOVA test-and for leg raise-URA p=0 (30°<60°), p=0 (60°<90°), p=0 (30°<90°) and LRA p=0.01 (30°<60°), p=0 (60°<90°), p=0 (30°<90°), respectively, by one-way ANOVA test-exercises, but not in the lateral abdominal muscles (EO, IO, and TrA). Also, there was no significant difference in the muscle thickness ratio of URA and LRA during both exercises. In the aspect of muscle activity, there was significant difference in the activation of RA muscle by selected angles, but not according to location during both exercises.
According to this study, exercise angle is thought to be an important contributing factor for strengthening of RA muscle; however, both the exercises are thought to have no property of strengthening RA muscle selectively based on the location.
Citations
To analyze the differences in the vertical ground reaction force (GRF) variables of hemiplegic patients compared with a control group, and between the affected and unaffected limbs of hemiplegic patients using foot scans.
Patients (n=20) with hemiplegia and healthy volunteers (n=20) underwent vertical force analysis. We measured the following: the first and second peak forces (F1, F2) and the percent stances at which they occurred (T1, T2); the vertical force impulse (VFI) and stance times. The GRF results were compared between the hemiplegic patients and control individuals, and between the affected and unaffected limbs of hemiplegic patients. Additionally, we analyzed the impulse of the unaffected limb according to the motor assessment scale (MAS), Brunnstrom stage, and a Timed Up and Go Test.
The F1s and F2s of the affected and unaffected limbs were significantly less than those of the normal control individuals (p<0.05). The T1s of both the affected and unaffected limbs of the patients were greater than control individuals, whilst the T2s were lower (p<0.05). Greater impulses and stance times were recorded on both sides of the patients than in the limbs of the control individuals (p<0.05). The MAS, Brunnstrom stage and Timed Up and Go Test results were significantly correlated with the VFI of the unaffected limbs (p<0.05).
The high impulse values of the unaffected limb were associated with complications during gait rehabilitation. Therefore, these results suggest that unaffected limbs should also be taken into consideration in these patients.
Citations
To observe the changes in protein expression induced by botulinum toxin A (BoNT-A) injection and to characterize the molecular and cellular action of mechanisms of BoNT-A injection on skeletal muscles using proteomic elements as biomarkers.
BoNT-A was injected into left gastrocnemius muscles of 12 Sprague-Dawley rats (2 months of age) at a dosage of 5 units/kg body weight. For the controls same volume of normal saline was injected to right gastrocnemius muscle of each rat. Muscle samples were obtained at 4 time points (3 rats per time point): 3, 7, 14, and 56 day post-injection. To reveal the alterations in muscle protein, we performed 2-dimensional electrophoresis (2DE) and compared Botox group and normal saline group at each time point. Altered protein spots in 2DE were identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometer (MALDI-TOF MS) proteomics analysis.
Compared with normal saline group, 46 protein spots showed changed protein expression. Twelve protein spots demonstrated increased volume and 34 protein spots demonstrated decreased volume. Among spots of decreased volume, 17 spots showed statistically significant differences. Thirty-eight identified proteins were associated with alterations in energy metabolism, muscle contractile function, transcription, translation, cell proliferation, and cellular stress response.
BoNT-A gives influences on muscle contractile function and energy metabolism directly or indirectly besides neurotoxic effects. Proteomic expression provides better understanding about the effect of BoNT-A on skeletal muscle.
Citations