Yong Min | 2 Articles |
To examine the effect of the posture of immobilization upon the tensile properties in injured Achilles tendon of rat for an initial period of immobilization. Forty-two Sprague-Dawley rats were used in the present study. Eighteen rats received a total tenotomy of the right Achilles tendon to mimic total rupture and were divided into three groups comprising of 6 rats each. Ankles of group A were immobilized at 60° of plantarflexion. Ankles of group B were immobilized at neutral position. Whereas, those of group C were immobilized at 60° of dorsiflexion. Other 18 rats received hemitenotomy to mimic partial rupture and were divided into three groups. The remaining 6 rats were kept free as control. After 14 days, we dissected the tendons and analyzed maximum force, stiffness, and energy uptake during pulling of the tendons until they ruptured. The tendons of 6 rats in each group and control were reserved for histology. Picrosirius staining was done for the analysis of collagen organization. In total tenotomy, tensile properties were significantly different between the control and the intervention groups (p<0.05). Group C showed relatively higher values than the groups A and B with respect to tensile properties (p>0.05). In partial tenotomy, tensile properties were significantly different between the control and the intervention groups (p<0.05). Group C showed significantly higher value than other intervention groups in terms of maximum force and energy uptake (p<0.05). The semiquantitative histologic grading scores were assigned for collagen organization. The scores for dorsiflexion posture were higher than the ones for plantarflexion. Dorsiflexion posture in partial ruptured Achilles tendon showed better functional recovery than other immobilized postures. In total ruptured case, the tensile properties showed increasing tendency in dorsiflexion posture. Citations Citations to this article as recorded by
Central pontine myelinolysis is a rare neurologic disorder that is defined by demyelination of longitudinally descending tracts and transversly crossing fibers in the basis pontis. Frequently observed clinical manifestations of this disorder include sudden weakness, dysphagia, loss of consciouness and locked-in syndrome. However, there have been a few studies that reported a benign course of this disease, which include cerebellar signs, such as ataxia, intention tremor, and dysarthria. Here we report on a 53-year-old male with a history of liver cirrhosis who showed the cerebellar type of central pontine myelinolysis. The patient was diagnosed with central pontine myelinolysis based on clinical presentations and magnetic resonance imaging findings after a liver transplantation. Conventional magenetic resonance imaging (MRI) revealed the preservation of the corticospinal tract and abnormal pontocerebellar fibers. However, these findings were not sufficient to define the pathophysiology of our patient. Electrophysiologic analysis and diffusion tensor imaging (DTI) were performed to investigate cerebellar signs in this case. Delayed central motor conduction time (CMCT) to the tibialis anterior muscle with transcranial magnetic stimulation (TMS) was observed, which indicated demyelination of the corticospinal tract. Also, diffusion tensor imaging showed abnormal pontocerebellar fibers, which might have been caused by cerebellar dysfunction in our patient. A combination of TMS and DTI was also used to determine the pathophysiology of this disease. Citations Citations to this article as recorded by
|