Im Joo Rhyu | 5 Articles |
Electrodiagnosis![]()
Objective
To investigate the anatomical characteristics of the biceps femoris short head (BS) and determine the optimal needle placement for BS examination. Methods Twenty-one lower limbs were dissected. The distances from the medial and lateral margins of the biceps femoris long head (BL) tendon to the common fibular nerve (CFN) (M_CFN_VD and L_CFN_VD, respectively) and the distance from the lateral margin of the BL tendon to the lateral margin of the BS (L_BS_HD) were measured 5 cm proximal to the tip of the fibular head (P1), four fingerbreadths proximal to the tip of the fibular head (P2), and at the upper apex of the popliteal fossa (P3). Results The BS was located lateral to the BL tendon. The CFN was located along the medial margin of the BL tendon. The median values were 2.0 (P1), 3.0 (P2), and 0 mm (P3) for M_CFN_VD; and 17.4 (P1), 20.2 (P2), and 21.8 mm (P3) for L_CFN_VD; and 8.1 (P1), 8.8 (P2), and 13.0 mm (P3) for L_BS_VD. Conclusion The lateral approach to the BL tendon was safer than the medial approach for examining the BS. Amore proximal insertion site around the upper apex of the popliteal fossa was more accurate than the distal insertion site. In this study, we propose a safer and more accurate approach for electromyography of the BS. Citations Citations to this article as recorded by
![]()
Objective
To present the branching patterns and anatomical course of the common fibular nerve (CFN) and its relationship with fibular head (FH). Methods A total of 21 limbs from 12 fresh cadavers were dissected. The FH width (FH_width), distance between the FH and CFN (FH_CFN), and thickness of the nerve were measured. The ratio of the FH_CFN to FH_width was calculated as follows: <1, cross type and ≥1, posterior type. Angle between the CFN and vertical line of the lower limb 5 cm proximal to the tip of the FH was measured. Branching patterns of the lateral cutaneous nerve of the calf (LCNC) were classified into four types according to its origin and direction as follows: type 1a, lateral margin of the CFN; type 1b, medial margin of the CFN; type 2, lateral sural cutaneous nerve (LSCN); and type 3, CFN and LSCN. Results In the cross type (15 cases, 71.4%), the ratio of FH_CFN/FH_width was 0.83 and the angle was 13.0°. In the posterior type (6 cases, 28.6%), the ratio was 1.04 and the angle was 11.0°. In the branching patterns of LCNC, type 2 was the most common (10 cases), followed by types 1a and 1b (both, 5 cases). Conclusion Location of the CFN around the FH might be related to the development of its neuropathy, especially in the cross type of CFN. The LCNC showed various branching patterns and direction, which could be associated with difficulties of electrophysiologic testing. Citations Citations to this article as recorded by
![]()
Objective
To identify the center of extensor indicis (EI) muscle through cadaver dissection and compare the accuracy of different techniques for needle electromyography (EMG) electrode insertion. Methods Eighteen upper limbs of 10 adult cadavers were dissected. The center of trigonal EI muscle was defined as the point where the three medians of the triangle intersect. Three different needle electrode insertion techniques were introduced: M1, 2.5 cm above the lower border of ulnar styloid process (USP), lateral aspect of the ulna; M2, 2 finger breadths (FB) proximal to USP, lateral aspect of the ulna; and M3, distal fourth of the forearm, lateral aspect of the ulna. The distance from USP to the center (X) parallel to the line between radial head to USP, and from medial border of ulna to the center (Y) were measured. The distances between 3 different points (M1– M3) and the center were measured (marked as D1, D2, and D3, respectively). Results The median value of X was 48.3 mm and that of Y was 7.2 mm. The median values of D1, D2 and D3 were 23.3 mm, 13.3 mm and 9.0 mm, respectively. Conclusion The center of EI muscle is located approximately 4.8 cm proximal to USP level and 7.2 mm lateral to the medial border of the ulna. Among the three methods, the technique placing the needle electrode at distal fourth of the forearm and lateral to the radial side of the ulna bone (M3) is the most accurate and closest to the center of the EI muscle. Citations Citations to this article as recorded by
To identify the anatomic characteristics of the pronator quadratus (PQ) muscle and the entry zone (EZ) of the anterior interosseous nerve (AIN) to this muscle by means of cadaver dissection. We examined the PQ muscle and AIN in 20 forearms from 10 fresh cadavers. After identifying the PQ muscle and the EZ of the AIN, we measured the distances from the midpoint (MidP) of the PQ muscle and EZ to the vertical line passing the tip of the ulnar styloid process (MidP_X and EZ_X, respectively) and to the medial border of the ulna (MidP_Y and EZ_Y, respectively). Forearm length (FL) and wrist width (WW) were also measured, and the ratios of MidP and EZ to FL and of MidP and EZ to WW were calculated. The MidP was found to be 3.0 cm proximal to the ulnar styloid process or distal 13% of the FL and 2.0 cm lateral to the medial border of the ulna or ulnar 40% side of the WW, which was similar to the location of EZ. The results reveal a more distal site than was reported in previous studies. We suggest that the proper site for needle insertion and motor point block of the PQ muscle is 3 cm proximal to the ulnar styloid process or distal 13% of the FL and 2 cm lateral to the medial border of the ulna or ulnar 40% side of the WW. Citations Citations to this article as recorded by
To demonstrate the bifurcation pattern of the tibial nerve and its branches. Eleven legs of seven fresh cadavers were dissected. The reference line for the bifurcation point of tibial nerve branches was an imaginary horizontal line passing the tip of the medial malleolus. The distances between the reference line and the bifurcation points were measured. The bifurcation branching patterns were categorized as type I, the pattern in which the medial calcaneal nerve (MCN) branched most proximally; type II, the pattern in which the three branches occurred at the same point; and type III, in which MCN branched most distally. There were seven cases (64%) of type I, three cases (27%) of type III, and one case (9%) of type II. The median MCN branching point was 0.2 cm (range, -1 to 3 cm). The median bifurcation points of the lateral plantar nerves and inferior calcaneal nerves was -0.6 cm (range, -1.5 to 1 cm) and -2.5 cm (range, -3.5 to -1 cm), respectively. MCN originated from the tibial nerve in most cases, and plantar nerves were bifurcated below the medial malleolus. In all cases, inferior calcaneal nerves originated from the lateral plantar nerve. These anatomical findings could be useful for performing procedures, such as nerve block or electrophysiologic studies. Citations Citations to this article as recorded by
|