Hoo Young Lee | 2 Articles |
Geriatric rehabilitation![]()
![]() Objective
To identify the prevalence and factors associated with T-score discordance between the spine and hip, as well as between the paretic and non-paretic hips in hemiplegic stroke patients, this study investigated bone mineral density (BMD) patterns. Bone loss predominantly affects the paretic hip after a stroke, and typical clinical assessments using dual-energy X-ray absorptiometry (DXA) that scan the lumbar spine (LS) and a single hip may overlook an osteoporosis diagnosis. This oversight could potentially lead to suboptimal treatment for stroke patients. Methods This study was a multicenter retrospective analysis of 540 patients admitted for stroke rehabilitation between October 2014 and February 2022, who underwent DXA of LS and bilateral hips. Results The prevalence rates of concordance, low LS discordance, and low hip discordance between the LS and hips were 48.2%, 12.2%, and 39.6%, respectively. The discordance rate between bilateral hips was 17.0%. The paretic side had significantly lower total hip T-scores than the non-paretic side (p<0.001). Notably low paretic hip discordance was more prevalent during the chronic phase. DXA scans of the LS and both hips revealed a 0.7%–0.9% higher major discordance compared to LS and single hip DXA scans. The multivariate analysis revealed a significant correlation between a low paretic hip discordance and cognitive impairment (adjusted odds ratio 0.071, 95% confidence interval 0.931–1.003, p<0.05). Conclusion Since stroke survivors are at high risk for hip fractures, comprehensive BMD assessments, which include LS and bilateral hips, should be considered for post-stroke osteoporosis care to enhance diagnostic accuracy and timely treatment. Citations Citations to this article as recorded by
To investigate immediate changes in hyolaryngeal movement and swallowing function after a cycle of neuromuscular electrical stimulation (NMES) on both submental and throat regions and submental placement alone in patients with dysphagia. Fifteen patients with dysphagia were recruited. First, videofluoroscopic swallowing study (VFSS) was performed before NMES. All patients thereafter received a cycle of NMES by 2 methods of electrode placement: 1) both submental and throat regions and 2) submental placement alone concomitant with VFSS. The Penetration-Aspiration Score (PAS) and the NIH-Swallowing Safety Scale (NIH-SSS) were measured for swallowing function. During swallowing, hyolaryngeal descent significantly occurred by NMES on both submental and throat regions, and anterior displacement of hyolaryngeal complex was significant on submental placement alone. NMES on submental placement alone did not change the PAS and NIH-SSS. However, NMES on both submental and throat regions significantly reduced the NIH-SSS, although it did not change the PAS. Patients with no brainstem lesion and with dysphagia duration of <3 months showed significantly improved the NIH-SSS. Immediate hyolaryngeal movement was paradoxically depressed after NMES on both submental and throat regions with significant reductions in the NIH-SSS but not the PAS, suggesting improvement in pharyngeal peristalsis and cricopharyngeal functions at the esophageal entry rather than decreased aspiration and penetration. The results also suggested that patients with dysphagia should be carefully screened when determining motor-level NMES. Citations Citations to this article as recorded by
|